Best L₁-Approximation

HANS STRAUSS

Institut für Angewandte Mathematik, Universität Erlangen-Nürnberg, 8520 Erlangen, West Germany

Communicated by G. Meinardus

Received January 6, 1982

INTRODUCTION

Recently best L_1 -approximation of continuous functions was extensively studied.

Galkin [2] and Strauss [10] showed that the problem of best approximation of continuous functions by polynomial splines has a unique solution. Micchelli [5] considered best L_1 -approximation by weak Chebyshev subspaces and studied a class of functions for which the best approximation is the unique solution of an interpolation problem with nodes independent of the functions. DeVore [1] has established a very nice condition for unique one-sided best L_1 -approximation which is very useful in applications to special functions.

In this paper we give first, a similar condition ensuring uniqueness of best L_1 -approximation. This condition can be considered a generalized Haar condition. Using it, we give a short proof of uniqueness of best L_1 -approximation from subspaces of spline functions.

Then we consider the relationship between best L_1 -approximation and certain classes of perfect splines. We characterize best L_1 -approximations from spline subspaces using perfect splines. We construct bounds for the error of best L_1 -approximations from spline subspaces which satisfy certain boundary conditions. These estimates have an application in numerical integration.

1. Uniqueness in L_1 -Approximation

In this section we shall develop conditions ensuring that the best approximation of a continuous function in the L_1 -norm is unique.

We shall need the following notation: Let C[a, b] be the space of continuous real-valued functions on the interval [a, b] normed by

HANS STRAUSS

 $||f|| = \int_a^b |f(x)| dx$. If $f \in C[a, b]$ then $Z(f) = \{x \in [a, b] : f(x) = 0\}$, and two zeros x_1, x_2 of f are said to be *separated* if there is an $x_0, x_1 < x_0 < x_2$. such that $f(x_0) \neq 0$.

The following condition will turn out to be very important for uniqueness in L_1 -approximation.

DEFINITION 1.1. Let $V = \text{span}\{v_1, ..., v_n\}$ be a subspace of C[a, b] such that every function v in V has only a finite number of separated zeros. We say that the subspace V satisfies *condition* A, if there exists, for every nonzero v in V and every finite subset $Z_1 = \{t_1, ..., t_r\}$ of $Z(v) \cap (a, b)$, a nonzero w in V such that

(a) $(-1)^{i} w(x) \ge 0$ for $x \in [t_{i-1}, t_{i}], i = 1,..., r+1$, where $t_{0} = a$. $t_{r+1} = b$;

(b) if v vanishes on an open subset of |a, b|, then w. too, vanishes there.

A similar condition concerning one-sided L_1 -approximation was suggested by DeVore [1].

EXAMPLE 1.2. Every finite dimensional Chebyshev subspace of C|a, b| satisfies condition A.

In Section 3 we show that subspaces of spline functions with fixed knots also satisfy condition A.

Condition A can be considered a generalized Haar condition. Next we shall need the following results on L_1 -approximation.

THEOREM 1.3. Let $V = \text{span}\{v_1, ..., v_n\}$ be an n-dimensional subspace of C[a, b] and f be a function in C[a, b]:

(a) The function v_0 in V is a best L_1 -approximation from V to f, i.e., $||f - v_0|| \leq ||f - v||$ for all v in V, if and only if

$$\left|\int_{a}^{b} v(x)\operatorname{sgn}(f-v_{0})(x)\,dx\right| \leq \int_{Z(f-v_{0})} |v(x)|\,dx$$

for all v in V.

(b) Let v_1, v_2 be two best L_1 -approximations then

$$(f(x) - v_1(x))(f(x) - v_2(x)) \ge 0, \qquad x \in [a, b].$$

Proof. See Rice [8, pp. 104, 107].

THEOREM 1.4. Let V be an n-dimensional subspace of C|a, b| satisfying

condition A. Then every function f in C[a, b] has a unique best L_1 -approximation from V.

Proof. Let v_1, v_2 be two best approximations to f. We conclude from Theorem 1.3 that

$$(f(x) - v_1(x))(f(x) - v_2(x)) \ge 0, \quad x \in [a, b].$$

W.l.o.g., we may assume that $v_2 = 0$. Then it is obvious that $(1/2)v_1$ is also a best approximation. Moreover, we have

$$|f(x) - (1/2)v_1(x)| = (1/2)|f(x) - v_1(x)| + (1/2)|f(x)|.$$

Hence it follows from $|f(x) - (1/2)v_1(x)| = 0$ that $|f(x) - v_1(x)| = |f(x)| = 0$. Therefore, $v_1(x) = 0$ if $f(x) - (1/2)v_1(x) = 0$.

Now we conclude from condition A that there exists a nonzero v_0 in V satisfying

$$(f(x) - (1/2) v_1(x)) v_0(x) \ge 0, \qquad x \in [a, b],$$
$$(f(x_0) - (1/2) v_1(x_0)) v_0(x_0) \ne 0$$

for some x_0 and the measure of the set $\{x: x \in Z(v_1), x \notin Z(v_0)\}$ is zero. Therefore

$$\left|\int_{a}^{b} \operatorname{sgn}(f(x) - (1/2) v_{1}(x)) v_{0}(x) \, dx\right| > 0.$$

Moreover, it follows that

$$\int_{Z(f-(1/2)v_1)} |v_0(x)| \, dx = 0.$$

We conclude from Theorem 1.3 that $(1/2)v_1$ is not a best approximation. This contradiction proves the theorem.

2. SUBSPACES OF SPLINE FUNCTIONS

In this section we consider subspaces of spline functions with fixed knots satisfying certain boundary conditions.

Let S be the subspace of polynomial spline functions with fixed knots, $a < x_1 < x_2 < \cdots < x_m < b$, having multiplicities m_1, \dots, m_r , respectively. Hence every s in S has the form

$$s(x) = \sum_{i=0}^{n-1} a_i x^i + \sum_{i=1}^{m} \sum_{j=1}^{m_i} b_{ij} (x - x_i)^{n-j}$$
$$\sum_{i=1}^{m} m_i = k, \qquad 0 < m_i \le n.$$

Let $I \subset \{0, ..., n-1\}$ and $J \subset \{0, ..., n-1\}$ be two preassigned subsets of the set of indices $\{0, ..., n-1\}$

$$I = \{i_r\}_{r=1}^p, \qquad J = \{j\}_{r=1}^q.$$

We denote by S(C), where $C = \{I, J\}$ the subspace of S satisfying

$$S(C) = \{ s \in S : s^{(i)}(a) = 0, i \in I, \\ s^{(j)}(b) = 0, j \in J \}.$$

Corresponding to I and J we define the sets

$$I' = \{n - i - 1: i \in \{0, ..., n - 1\} \setminus I\} = \{i'_r\}_{r=1}^{n-q},$$

$$J' = \{n - j - 1: j \in \{0, ..., n - 1\} \setminus J\} = \{j'_r\}_{r=1}^{n-q}.$$

It follows that (I')' = I and (J')' = J.

We shall also need the following definitions.

A subset $\{v_1,...,v_n\}$ of linearly independent functions of C[a, b] is called a *weak Chebyshev system* if every function v in $V = \text{span}\{v_1,...,v_n\}$ has at most n-1 sign changes on [a, b]. The subspace V is called a *weak Chebyshev subspace*. The subset $\{v_i\}_{i=1}^{n}$ is called a *complete weak Chebyshev system* if the subsets $\{v_i\}_{i=1}^{n}$ are weak Chebyshev systems for k = 1,...,n. The subspace V is called a *complete weak Chebyshev subspace* if V contains a basis $\{v_i\}_{i=1}^{n}$ which is a complete weak Chebyshev system.

It will be necessary that the sets I and J satisfy certain conditions.

Let I and J be subsets of $\{0, ..., n-1\}$ such that

$$M_{v-1} + r \ge v, \qquad v = 1,..., n,$$
 (2.1)

where $r = n + k - p - q \ge 0$ and M_v counts the number of terms in $\{i_1, ..., i_p, j_1, ..., j_q\}$ less than or equal to v.

LEMMA 2.1. Let S(C) be given where $C = \{I, J\}$ satisfy conditions (2.1). Then S(C) is weak Chebyshev subspace of dimension r = n + k - p - q.

Proof. This result is shown by Micchelli and Pinkus [7] for simple knots but it is also true for multiple knots.

300

LEMMA 2.2. Suppose that I and J satisfy conditions (2.1). Then the corresponding subsets I' and J' satisfy

$$M'_{\nu-1} + k \ge \nu, \qquad \nu = 1, ..., n,$$
 (2.2)

where M'_{ν} counts the number of terms in $\{i'_1,...,i'_{n-p},j'_1,...,j'_{n-q}\}$ less than or equal to ν .

Proof. It can be shown that $M'_{\nu-1} = 2\nu - p - q + M_{n-\nu-1}$, $\nu = 1,..., n-1$, and it follows from the assumptions that $M_{n-\nu-1} + r \ge n-\nu, \nu = 1,..., n-1$. Since r = n + k - p - q we obtain $M'_{\nu-1} + k \ge \nu, \nu = 1,..., n-1$. Moreover, $M'_{n-1} + k = 2n - p - q + k = r + n$. This proves the lemma.

Henceforth it is always required that the boundary conditions C of S(C) satisfy conditions (2.1).

3. Uniqueness in L_1 -Approximation for Subspaces of Spline Functions

Uniqueness in L_1 -approximation for subspaces of spline functions has been shown in [2, 10]. Here we want to give a simple proof of uniqueness using the results of Section 1. Moreover, we consider approximation problems satisfying certain boundary conditions. These results can be applied to numerical integration.

LEMMA 3.1. Let V be an n-dimensional weak Chebyshev subspace of C[a, b].

(a) Then V is a complete weak Chebyshev subspace.

(b) Given $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$. Then there exists a nontrivial v in V such that

 $(-1)^{i+1} v(x) \ge 0, \qquad x_{i-1} < x < x_i, \qquad i = 1, ..., n.$

Proof. (a) See Sommer and Strauss [9].

(b) See Jones and Karlovitz [3].

Now we shall show the following result:

THEOREM 3.2. The subspace S(C) satisfies condition A.

Proof. Let s be a function of S(C). We shall distinguish the following cases:

(a) Suppose that s has no zero interval. According to Lemma 2.1, S(C) is a weak Chebyshev subspace. It follows from Lemma 3.1(a) that

S(C) is a complete weak Chebyshev subspace. Assume that s has the zeros $U = \{u_i\}_1^t$, t < r, on (a, b). Let $U_1 = \{v_i\}_1^v$ be a subset of U. Then there exists a weak Chebyshev subspace of dimension v + 1 of S(C). It follows from Lemma 3.1 that there is a nontrivial $s_1 \in S(C)$

$$(-1)^{i} s_{1}(x) \ge 0, \qquad x \in [v_{i-1}, v_{i}], \qquad i = 1, ..., v + 1,$$

 $v_{0} = a, \quad v_{v+1} = b.$

(b) The function s has a zero interval. Assume that $[x_i, x_j]$ is a subinterval such that s(x) = 0, $x \in [x_i, x_j]$ and s has no zero interval on $[a, x_i]$. We define

$$V_1 = \{ s \mid_{[a,x_i]} : s \in S, s^{(i)}(a) = 0, i \in I, \\ s^{(i)}(x_i) = 0, j \in 0, ..., m - m_i - 1 \}.$$

Let $U = \{u_i\}_1^t$ be the set of zeros of s on (a, x_i) and let $\{v_i\}_1^v$ be a subset of U. It follows from (a) that there exists some $\bar{s} \in V_1$ satisfying

$$(-1)^{i} \, \bar{s}(x) \ge 0, \qquad x \in [v_{i-1}, v_{i}], \qquad i = 1, ..., v + 1,$$

 $v_{0} = x_{0}, \quad v_{v+1} = x_{i}.$

Then we define $s_1 \in S(C)$ by $s_1(x) = \overline{s}(x)$, $x \in [a, x_i)$ and $s_1(x) = 0$ elsewhere.

(c) Similarly a function s_1 can be constructed if $x_i = a$, $x_i < b$.

This proves that S(C) satisfies condition A.

Now we shall study an approximation problem satisfying boundary conditions. Let the subspace S in C[a, b] be given. Let $C = \{I, J\}$ be boundary conditions satisfying (2.1). Suppose that g in C[a, b] is a function such that $g^{(i_p)}(a)$ exists if $I \neq \emptyset$ and $g^{(i_q)}(b)$ exists if $J \neq \emptyset$. We define

$$V_g(C) = \{ s \in S : s^{(i)}(a) = g^{(i)}(a), i \in I, \\ s^{(j)}(b) = g^{(j)}(b), j \in J \}.$$

It is well-known that $V_{\mu}(C) \neq \emptyset$ if I and J satisfy (2.1).

THEOREM 3.3. There is a unique function s_0 in $V_g(C)$ satisfying $||g - s_0|| \leq ||g - s||$ for all $s \in V_g(C)$.

Proof. Let \bar{s} be a function of $V_g(C)$. We define $f = g - \bar{s}$. It follows from Theorem 1.4 and Theorem 3.2 that there exists a unique best L_1 -approximation s_1 from S(C) to f. Hence $s_0 = \bar{s} + s_1$ is the unique function satisfying $||g - s_0|| \leq ||g - s||$, $s \in V_g(C)$.

Finally we shall give an example that unicity is not true for weak Chebyshev subspaces, in general.

EXAMPLE 3.4. We define the following functions on [0, 5]. Let

$$v_{1}(x) = 1,$$

$$v_{2}(x) = \begin{cases} -1 + x & 0 \le x < 1 \\ 0 & 1 \le x \le 4, \\ x - 4 & 4 < x \le 5 \end{cases}$$

$$f(x) = \begin{cases} 1 - x & 0 \le x < 1 \\ 0 & 1 \le x \le 4 \\ x - 4 & 4 < x \le 5 \end{cases}$$

Then every function of $V = \text{span}\{v_1, v_2\}$ has at most one sign change, i.e., V is a weak Chebyshev subspace. On the other hand, we have for $0 \le c < 1$ that

$$\int_0^5 v_2(x) \operatorname{sgn}(f - cv_2)(x) \, dx = 0,$$

$$2a = \left| \int_0^5 v_1(x) \operatorname{sgn}(f - cv_2)(x) \, dx \right| < \int_{Z(f - cv_2)} |v_1(x)| \, dx = 3.$$

Hence we conclude from Theorem 1.3 that cv_2 , $0 \le c < 1$, are best approximations to f.

4. L_1 -Approximation and Perfect Splines

In this section we shall show that best L_1 -approximation for subspaces of spline functions is closely related to certain classes of perfect splines.

A perfect spline of degree $n \ (n \ge 1)$ with r knots on [a, b] is a function of the form

$$P(x) = c \left(x^{n} + 2 \sum_{i=1}^{r} (-1)^{i} (x - u_{i})^{n}_{+} \right) + \sum_{j=0}^{n-1} a_{j} x^{j}$$
(4.1)

where $c, a_0, ..., a_{n-1}$ are real constants and the knots $\{u_i\}$ satisfy $a < u_1 < \cdots < u_n < b$.

Let S be the subspace of Section 2. Suppose that f and s are two functions such that $f \in C^{(n)}[a, b]$ and $s \in S$.

Repeated integration by parts yields the identity

$$\int_{a}^{b} (f-s)(x) P^{(n)}(x) dx$$

$$= \sum_{i=0}^{n-1} (-1)^{i} (f-s)^{(i)}(x) P^{(n-i-1)}(x) |_{a}^{b}$$

$$+ \sum_{i=1}^{m} \sum_{j=1}^{m_{i}} (-1)^{n-j} (f-s)^{(n-j)}(x) P^{(j-1)}(x) |_{x_{i}^{i}=0}^{x_{i}=0}$$

$$+ (-1)^{n} \int_{a}^{b} f^{(n)}(x) P(x) dx. \qquad (4.2)$$

The following class of perfect splines will be very important.

Let S(C) be a subspace where $C = \{I, J\}$ satisfies (2.1). Suppose that $C' = \{I', J'\}$ are the boundary conditions corresponding to C. Let P(C') be the set of perfect splines of degree n satisfying

$$P^{(i)}(a) = 0, \quad i \in I', \quad P^{(j)}(b) = 0, \quad j \in J',$$

$$P^{(j)}(x_i) = 0, \quad j = 0, ..., m_i - 1 \quad \text{for} \quad i = 1, ..., m, \quad (4.3)$$

$$|P^{(n)}(x)| = 1.$$

It is said that the class P(C') corresponds to S(C).

LEMMA 4.1. There exists a perfect spline P in P(C') with at most n + k - p - q knots.

Proof. See Karlin [4].

LEMMA 4.2. Let h be a function such that $h(x) = \varepsilon(-1)^i$ a.e. on (t_{i-1}, t_i) , where $a = t_0 < t_1 < \cdots < t_{r+1} = b$, $i = 1, \dots, r+1$ and $\varepsilon \in \{-1, 1\}$ satisfying

$$\int_a^b s(x) h(x) \, dx = 0$$

for all $s \in S(C)$. Then there exists a perfect spline $P \in P(C')$ satisfying $P^{(n)} = h$ a.e.

Proof. Let P(x) be of the form (4.1) where $t_i = u_i$, i = 1,...,r. Then we determine the coefficients $a_0,..., a_{n-1}$ of P such that the first n conditions of (4.3) are satisfied. Since the boundary conditions C' satisfy (2.2) the set $\{a_i\}$ is uniquely determined. Then it is possible to prove with identity (4.3) where $f \equiv 0$ that the other conditions of (4.3) are also satisfied. (See also [11, Theorem 2.3].)

Henceforth we shall always consider a function g and a subset $V_g(C)$ satisfying the properties of Section 3.

THEOREM 4.3. Let s_0 be a function in $V_g(C)$ such that $g - s_0$ vanishes only on a set of measure zero. Then s_0 is a best L_1 -approximation to g out of $V_g(C)$ if and only if there exists a perfect spline P in P(C') where P(C')corresponds to S(C) such that $P^{(n)} = \operatorname{sgn}(g - s_0)$ a.e.

Proof. (a) Let s_0 be a best approximation. Then it follows from Theorem 1.3 that

$$\int_a^b s(x) \operatorname{sgn}(g(x) - s_0(x)) \, dx = 0, \qquad s \in S(C).$$

Hence it follows from Lemma 4.2 that there exists a P in P(C') satisfying $P^{(n)} = \text{sgn}(g - s_0)$ a.e.

(b) There is a P(C') such that $P^{(n)} = \operatorname{sgn}(g - s_0)$ a.e. Let $f \equiv 0$ in (4.2). Then it follows from this identity that

$$\int_a^b s(x) P^{(n)}(x) dx = 0, \qquad s \in S(C).$$

We conclude from Theorem 1.3 and $P^{(n)} = \operatorname{sgn}(g - s_0)$ a.e. that 0 is a best approximation from S(C) to $g - s_0$. Hence s_0 is a best approximation to g out of $V_g(C)$.

THEOREM 4.4. Let s_0 be a best L_1 -approximation to g in $C^{(n)}[a, b]$ out of $V_g(C)$. Suppose that $g - s_0$ vanishes only on a set of measure zero.

(a) Then

$$\|g-s_0\| \ge \left|\int_a^b g^{(n)}(x) P(x) \, dx\right|$$

for all P in P(C').

(b) There exists a P_0 in P(C') such that

$$||g-s_0|| = \left|\int_a^b g^{(n)}(x) P_0(x) dx\right|.$$

Proof. (a) It follows from $|P^{(n)}(x)| = 1$ that

$$\int_{a}^{b} |g(x) - s_{0}(x)| \, dx \ge \left| \int_{a}^{b} (g(x) - s_{0}(x)) P^{(n)}(x) \, dx \right|$$

for all P in P(C'). Then we conclude from (4.2) that

$$\left|\int_{a}^{b} (g(x) - s_{0}(x)) P^{(n)}(x) dx\right| = \left|\int_{a}^{b} g^{(n)}(x) P(x) dx\right|.$$

(b) Let P_0 be the perfect spline of Theorem 4.3 corresponding to the best approximation s_0 . Then

$$\int_{a}^{b} |g(x) - s_{0}(x)| \, dx = \left| \int_{a}^{b} (g(x) - s_{0}(x)) P_{0}^{(n)}(x) \, dx \right|.$$

Now the assertion follows as in (a).

5. Estimates

In this section we want to estimate the error in L_1 -approximation for some special problems. The estimates have an application in numerical integration.

THEOREM 5.1. Let g in $C^{(n)}[a, b]$ and $V_g(C)$ be given. Suppose that s_0 is a best L_1 -approximation to g out of $V_g(C)$ and $g - s_0$ vanishes only on a set of measure zero. Then there exists a P_0 in P(C') satisfying

$$|| g - s_0 || \leq || P_0 ||_{\infty} || g^{(n)} ||$$

where $||P_0||_{\infty} = \max_{a \le x \le b} |P_0(x)|$.

Proof. We conclude from Theorem 4.4(b) that there is a perfect spline P_0 in P(C') such that

$$||g-s_0|| = \left|\int_a^b g^{(n)}(x) P_0(x) dx\right|.$$

Hence

$$\|g-s_0\|\leqslant \|P_0\|_{\infty}\|g^{(n)}\|.$$

Micchelli, Rivlin and Winograd [6] proved the following result.

LEMMA 5.2. Let P_0 be a perfect spline of degree n satisfying $P(x_i) = 0$, i = 0, ..., k + 1 for $0 = x_0 < x_1 < \cdots < x_{k+1}$. Then

$$\|\boldsymbol{P}\|_{\infty} \leqslant k_i \|\boldsymbol{P}^{(n)}\|_{\infty}, \qquad i = 1, 2$$

where

$$k_1 = \Delta^n / 4n, \qquad k_2 = ((n-1)^{n-1} / n!)(\Delta/2)^n$$
 (5.1)

and $\Delta = \max_{i=0,...,k} \{ |x_{i+1} - x_i| \}.$

THEOREM 5.3. Let g in $C^{(n)}[0,1]$ be given. Suppose that $V_g(C) = \{s \in S: (g-s)^{(i)}(0) = (g-s)^{(i)}(1) = 0, i = 0,..., n-2\}$, where $0 = x_0 < x_1 < \cdots < x_k < x_{k+1} = 1$ are the knots of S. Suppose that s_0 is a best L_1 -approximation to g out of $V_g(C)$ and $g-s_0$ vanishes only on a set of measure zero. Then

$$||g - s_0|| \leq k_i ||g^{(n)}||, \quad i = 1, 2$$

where k_1, k_2 are defined in (5.1).

Proof. We conclude from Theorem 5.1 that there exists a perfect spline P_0 satisfying $P_0(x_i) = 0$, i = 0, ..., k + 1, $||P_0^{(n)}||_{\infty} = 1$ and

$$||g - s_0|| \leq ||P_0||_{\infty} ||g^{(n)}||.$$

Then the assertions follow from Lemma 5.2.

Remark. These results can be applied in numerical integration. The relationship between L_1 -approximation with spline functions and best quadrature formulae was studied by Strauss [11] in detail. Using the theorems of this section we are able to give estimates for the remainder functionals of these best quadrature formulae.

References

- 1. R. DEVORE, private communication.
- 2. R. V. GALKIN, The uniqueness of the element of best mean approximation to a continuous function using splines with fixed nodes, *Math. Notes* **15** (1974), 3–8.
- R. C. JONES AND L. A. KARLOVITZ, Equioscillation under nonuniqueness in the approximation of continuous functions, J. Approx. Theory 3 (1970), 138-145.
- 4. S. KARLIN, Interpolation properties of generalized perfect splines and the solution of certain extremal problems, I, *Trans. Amer. Math. Soc.* 206 (1975), 25-66.
- C. A. MICCHELLI, Best L¹ approximation by weak Chebyshev systems and the uniqueness of interpolating perfect splines, J. Approx. Theory 19 (1977), 1-14.
- C. A. MICCHELLI, T. J. RIVLIN, AND S. WINOGRAD, The optimal recovery of smooth functions, *Numer. Math.* 26 (1976), 191–200.
- 7. C. A. MICCHELLI AND A. PINKUS, Moment theory for weak Chebyshev systems with applications to monosplines, quadrature formulae and best one-sided L^1 -approximation by spline functions with fixed knots, *SIAM J. Math. Anal* 8 (1977), 206–230.
- J. R. RICE, "The Approximation of Functions," Vol. I, Addison-Wesley, Reading, Mass., 1964.

HANS STRAUSS

- 9. M. SOMMER AND H. STRAUSS, Eigenschaften von schwach tschebyscheffschen Räumen, J. Approx. Theory 21 (1977), 257–268.
- H. STRAUSS, L₁-Approximation mit Splinefunktionen, in "Numerische Methoden der Approximationstheorie, Oberwolfach 1973" (L. Collatz and G. Meinardus, Eds.), pp. 151–162, ISNM 26, Birkhäuser-Verlag, Basel, 1975.
- H. STRAUSS, Approximation mit Splinefunktionen und Quadraturformeln. In "Spline Functions, Karlsruhe 1975" (K. Böhmer, G. Meinardus, and W. Schempp, Eds.), pp. 371-419, Lecture Notes in Mathematics No. 501, Springer-Verlag, Berlin, 1976.