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INTRODUCTION

Recently best L -approximation of continuous functions was extensively
studied.

Galkin [2] and Strauss [10]| showed that the problem of best approx-
imation of continuous functions by polynomial splines has a unique solution.
Micchelli [5] considered best L,-approximation by weak Chebyshev
subspaces and studied a class of functions for which the best approximation
is the unique solution of an interpolation problem with nodes independent of
the functions. DeVore [1] has established a very nice condition for unique
one-sided best L ,-approximation which is very useful in applications to
special functions.

In this paper we give first, a similar condition ensuring uniqueness of best
L -approximation. This condition can be considered a generalized Haar
condition. Using it, we give a short proof of uniqueness of best L, -
approximation from subspaces of spline functions.

Then we consider the relationship between best L ,-approximation and
certain classes of perfect splines. We characterize best L,-approximations
from spline subspaces using perfect splines. We construct bounds for the
error of best L -approximations from spline subspaces which satisfy certain
boundary conditions. These estimates have an application in numerical
integration.

1. UNIQUENESS IN L -APPROXIMATION

In this section we shall develop conditions ensuring that the best approx-
imation of a continuous function in the L,-norm is unique.

We shall need the following notation: Let C|a,b] be the space of
continuous real-valued functions on the interval |a,b] normed by
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I/l =21 f(x)|dx.  f€ Cla, b] then Z(f) = |x € [a, b|:f(x)=0}. and two
zeros x,, x, of f are said to be separated if there is an x,, x, < x, < X,. such
that f(x,) # 0.

The following condition will turn out to be very important for uniqueness
in L ,-approximation.

DEerINITION 1.1.  Let ¥ =spanjv,,..,v,} be a subspace of Cla.b| such
that every function v in ¥ has only a finite number of separated zeros. We
say that the subspace V satisfies condition A, if there exists. for every
nonzero v in V and every finite subset Z, = {r,....1,} of Z(v)M(a.b). a
nonzero w in ¥ such that

(@) (—=D)'wx)>0 for x€ [t; ,.1;]. i=lo..r+ 1. where 1,=a.
1, =b;

, then w. too. vanishes

(b) if v vanishes on an open subset of |a,b
there.

A similar condition concerning one-sided L ,-approximation was suggested
by DeVore [1].

ExaMpLE 1.2. Every finite dimensional Chebyshev subspace of Cla. b]
satisfies condition A.

In Section 3 we show that subspaces of spline functions with fixed knots
also satisfy condition A.

Condition A can be considered a generalized Haar condition.

Next we shall need the following results on L -approximation.

THEOREM 1.3. Let V =span{v,...., t,} be an n-dimensional subspace of
Cla, b and f be a function in Cla.b|:

(a) The function v, in V is a best L -approximation from V 1o [. ie.,
= vl < S— vl for all v in V, if and only if

-b -
| veosen(/ ) de <)
a CZOL 0
forall vin V.
(b) Let v,,uv, be two best L ,-approximations then

(f(x) = (NS x) —ea(x)) 20, x€la, b
Proof. See Rice |8, pp. 104, 107].

THEOREM 1.4. Let V be an n-dimensional subspace of Cla, b] satisfving
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condition A. Then every function f in Cla,b| has a unique best L,-
approximation from V.

Proof. Let v,,v, be two best approximations to f. We conclude from
Theorem 1.3 that

(f(x) =0, (%) —0x)) 20, x€{a,b].

W.l.o.g., we may assume that v, = 0. Then it is obvious that (1/2) v, is also
a best approximation. Moreover, we have

/() = (1/2) v,(0) = (1/2) |/ (x) = 0,0 + (1/2) |/ ().

Hence it follows from |f(x)—(1/2)v,(x)]=0 that |f(x)—v,(x) =
| f(x) = 0. Therefore, v,(x) =0 if f(x) — (1/2) v,(x) = 0.
Now we conclude from condition A that there exists a nonzero v, in V
satisfying
(f(x) = (1/2) v,(x)) vo(x) 20,  x € [a,b],
(f(xo) = (1/2) v1(x0)) vo(xo) # O

for some x, and the measure of the set {x:x € Z(v,), x € Z(v,)} is zero.
Therefore

[ sentr )~ (1722, vy e | >0

Moreover, it follows that

j |vg(x)) dx = 0.

Z(f-/2vp

We conclude from Theorem 1.3 that (1/2) v, is not a best approximation.
This contradiction proves the theorem.

2. SUBSPACES OF SPLINE FUNCTIONS

In this section we consider subspaces of spline functions with fixed knots
satisfying certain boundary conditions.

Let S be the subspace of polynomial spline functions with fixed knots,
a<x, <x,<--<x,<b, having multiplicities m,,..,m,, respectively.
Hence every s in S has the form
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ne | m om;

. ; Lo ;

s(x)= N ax'+ N N px—x)n
w0 17

m
Nom =k, 0 < m<n

Let I < {0,..,n—1} and J < {0...,n — 1} be two preassigned subsets of the
set of indices {0,....n — 1}

I=1i0 . J=1

N r

We denote by S(C), where C = {I.J} the subspace of S satisfying
S(C)={s€ S:sa)=0,i €1,
sb)=0.jE J.

Corresponding to / and J we define the sets
I'={n—1i—1:0€{0u..n— 1IN\ ={I"}1_ 4.
J={n—j—1:jE{0..n— I\Jy={j 1000

It follows that (/') =1 and ('} =J.

We shall also need the following definitions.

A subset {v,,..., v,} of linearly independent functions of Cla. b| is called a
weak Chebyshev system if every function v in V =spani{v,...v,} has at
most n— 1 sign changes on |a,b]. The subspace V is called a iweak

Chebyshev subspace. The subset {v;}7 is called a complete weak Chebysher

system if the subsets {v,}* are weak Chebyshev systems for k = I..... n. The
subspace V is called a complete weak Chebyshev subspace if V contains a
basis {v;}}| which is a complete weak Chebyshev system.

It will be necessary that the sets [ and J satisfy certain conditions.

Let / and J be subsets of {0,.... 7 — 1} such that

M, +r>v. p=l... " (2.1)

where r=n+k—-p-—g>0 and M, counts the number of terms in
{iseesbysfyaenj, ) less than or equal to v.

LEMMA 2.1. Let S(C) be given where C = {1,J)} satisfy conditions (2.1).
Then S(C) is weak Chebyshev subspace of dimension r =n + k —p —gq.

Proof. This result is shown by Micchelli and Pinkus |7] for simple knots
but it is also true for multiple knots.
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LEMMA 2.2. Suppose that I and J satisfy conditions (2.1). Then the
corresponding subsets I' and J' satisfy

M, +k2>v, v=1,.,n, 2.2)

where M, counts the number of terms in {i{,...iy_,, jiwsjn_q} less than or
equal tov.

Proof. It can be shown that M,  =2v—p—q+ M, , |, v=1,.,
n — 1, and it follows from the assumptions that M, _, +r>n—v,v=1,..,
n—1. Since r=n+k—p—q we obtain M, +k>2v,v=1,..,n—1
Moreover, M, _, + k=2n—p —q + k=r + n. This proves the lemma.
Henceforth it is always required that the boundary conditions C of S(C)

satisfy conditions (2.1).

3. UNIQUENESS IN L ,-APPROXIMATION FOR SUBSPACES OF SPLINE
FUNCTIONS

Uniqueness in L;-approximation for subspaces of spline functions has
been shown in [2, 10]. Here we want to give a simple proof of uniqueness
using the results of Section 1. Moreover, we consider approximation
problems satisfying certain boundary conditions. These results can be
applied to numerical integration.

Lemma 3.1. Let V be an n-dimensional weak Chebyshev subspace of
Cla, b].

(a) Then V is a complete weak Chebyshev subspace.

(b) Given a=xy<x, <+ <X,_,<x,=b. Then there exists a
nontrivial v in V such that

(—_l)i+lv(x)>0’ Xi <X<xi, i= 1,..., n.
Proof. (a) See Sommer and Strauss [9].
(b) See Jones and Karlovitz [3].

Now we shall show the following result:

THEOREM 3.2. The subspace S(C) satisfies condition A.

Proof. Let s be a function of S(C). We shall distinguish the following
cases:

(a) Suppose that s has no zero interval. According to Lemma 2.1,
S(C) is a weak Chebyshev subspace. It follows from Lemma 3.1(a) that
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S(C) is a complete weak Chebyshev subspace. Assume that s has the zeros
U= {u;}', t <r,on (a,b) Let U = {v,}} be a subset of U. Then there exists
a weak Chebyshev subspace of dimension v+ 1 of S(C). It follows from
Lemma 3.1 that there is a nontrivial s, € S(C)

(=1 s,(x) >0, XE v, s 1), i= Ly, v+ 1,

vy=a, v., ,=b

(b) The function s has a zero interval. Assume that |x;, x;] is a subin-
terval such that s(x) =0, x & [x;, x;] and s has no zero interval on |a, x,|.
We define

Vi=1sliax, s €S, s(a)=0,i €,
sP(x)=0,j € Opcom—m, — 1.
Let U = {u;}} be the set of zeros of s on (a, x;) and let {v,}} be a subset of U.
It follows from (a) that there exists some §€ V| satisfying
(—1) §(x) >0, X€E v, 1,0l i= Ly + 1.

Ug=Xg, Upyy=X;.

{

Then we define s, € S(C) by s,(x)=35x), x€la,x;) and s5,(x)=0
elsewhere.

(c) Similarly a function s, can be constructed if x; = a, x; <b.

This proves that S(C) satisfies condition A.

Now we shall study an approximation problem satisfying boundary
conditions. Let the subspace S in Cla,b| be given. Let C={l,J} be
boundary conditions satisfying (2.1). Suppose that g in Cla, b] is a function
such that g'’”(a) exists if I # @ and g¥? (b) exists if J # &. We define

V(C)=1{s€ S:s'(a)=¢g""(a) i E
sV(b) =g (b).j € J}.

It is well-known that V (C)+ @ if I and J satisfy (2.1).

THEOREM 3.3. There is a unique function s, in V,(C) satisfying
I g =soll <ll g — sl for all s € V(C).

Proof. Let § be a function of V (C). We define /= g — §. It follows from
Theorem 1.4 and Theorem 3.2 that there exists a unique best L,-
approximation s, from S(C) to f. Hence s, =§+ s, is the unique function
satisfying || g — sol| <[l g — sl s € V,(C).



BEST L -APPROXIMATION 303

Finally we shall give an example that unicity is not true for weak
Chebyshev subspaces, in general.

ExaMPLE 3.4. We define the following functions on [0, 5]. Let

v,(x)=1,
-1+ x 0<x<«1
v,(x)=30 1<x<4,
x—4 4<xK5
1 —x 0<x<l
Sx)=10 1<xg4
x—4 4<xg5

Then every function of V' = span{v,, v,} has at most one sign change, i.e., V
is a weak Chebyshev subspace. On the other hand, we have for 0 ¢ <1
that

f v,(x) sgn(f— cv,)(x)dx =0,
0

2a = ‘f v,(x) sgn(f— cv,)(x) dx| < [

[v,(x)|dx = 3.
“Z(f—cvy)
Hence we conclude from Theorem 1.3 that cv,, 0 < ¢ < 1, are best approx-
imations to f.

4. L ,-APPROXIMATION AND PERFECT SPLINES

In this section we shall show that best L -approximation for subspaces of
spline functions is closely related to certain classes of perfect splines.

A perfect spline of degree n (n > 1) with r knots on [a, b] is a function of
the form

r n—1
P(x)=c (x"+2 y (—1)*'(x—u,.)1) + Y ax 4.1)
i=1 Jj=0
where ¢, a,,...,a,_; are real constants and the knots {u,} satisfy
a<u <+ <u,<b
Let S be the subspace of Section 2. Suppose that f and s are two functions
such that f€ C™[a, b] and s € S.
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Repeated integration by parts yields the identity

[ (7= )00 Py dx

=N D=0 P

i=0

*,\i i (=" (=) ) P ()
+(=1)" |-bfw(x) P(x) dx. (4.2)

The following class of perfect splines will be very important.

Let S(C) be a subspace where C={l.J} satisfies (2.1). Suppose that
C'={I',J’} are the boundary conditions corresponding to C. Let P(C’) be
the set of perfect splines of degree n satisfying

P@)=0, i€l PYB)=0. jEJ.
PPx)=0, j=0,..,m —1 for i= l..,m. (4.3)
[P (x) = 1.

It is said that the class P(C’) corresponds to S(C).

LeMMA 4.1. There exists a perfect spline P in P(C') with at most
n+k—p—q knots.

Proof. See Karlin |4].

LEMMA 4.2. Let h be a function such that h(x)=e(—1)" a.e. on (t; . 1,)
where a =1, <t, <.+ <t ,=b i=1..,r+1and¢€ {—1, 1} satisfying

g’b s(x) h(x) dx = 0

Sor all s&€ S(C). Then there exists a perfect spline P& P(C') satisfving
P" =hae.

Progf. Let P(x) be of the form (4.1) where t;=u,;, i=1,....r. Then we
determine the coefficients ay.,..., a,_, of P such that the first n conditions of
(4.3) are satisfied. Since the boundary conditions C’ satisfy (2.2) the set {a,!
is uniquely determined. Then it is possible to prove with identity (4.3) where

S=0 that the other conditions of (4.3) are also satisfied. (See also [lI.
Theorem 2.3].)
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Henceforth we shall always consider a function g and a subset V,(C)
satisfying the properties of Section 3.

THEOREM 4.3. Let s, be a function in V,(C) such that g — s, vanishes
only on a set of measure zero. Then s, is a best L -approximation to g out of
V(C) if and only if there exists a perfect spline P in P(C') where P(C')
corresponds to S(C) such that P =sgn(g —s,) a.e.

Progf. (a) Let s, be a best approximation. Then it follows from
Theorem 1.3 that

j ’ s(x) sgn(g(x) — s,(x))dx =0,  s€ S(O).

Hence it follows from Lemma 4.2 that there exists a P in P(C’) satisfying
P™ =sgn( g—s,) ae.

(b) There is a P (C') such that P =sgn(g—s,) a.e. Let f=0 in
(4.2). Then it follows from this identity that

(‘b s(x) PP(x)dx =0, s€ S(C)

We conclude from Theorem 1.3 and P =sgn(g —s,) a.e. that 0 is a best

approximation from S(C) to g —s,. Hence s, is a best approximation to g
out of V,(C).

THEOREM 4.4. Let s, be a best L -approximation to g in C"™[a, b] out of
V(C). Suppose that g — s, vanishes only on a set of measure zero.

(a) Then

18— soll >

f ’ g™ (x) P(x) dx

for all P in P(C').
(b) There exists a P, in P(C') such that

I8 —soll =

[ 8™ x) Py dx

Proof. (a) It follows from |P™(x) =1 that

b b
[ Tt — s> ||| (s =) P x|
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for all P in P(C’). Then we conclude from (4.2) that

| g™ Px) dx

Jﬂb (g(x) — s4(x)) P"'(x) dx

{b) Let P, be the perfect spline of Theorem 4.3 corresponding to the
best approximation s,. Then

b
("] gx) = so(x)] dx =

“da

B ,
| J (8(x) = 54(x)) Py (x) dx|.

Now the assertion follows as in (a).

5. ESTIMATES

In this section we want to estimate the error in L -approximation for some
special problems. The estimates have an application in numerical integration.

THEOREM 5.1. Let g in C'™|a, b| and V (C) be given. Suppose that s, is
a best L-approximation to g out of V (C) and g — s, vanishes only on a set
of measure zero. Then there exists a P, in P(C') satisfying

lg—=soll <1 Pl | 'Y

where || Pyl = max, ., | Po(x))-

Proof. We conclude from Theorem 4.4(b) that there is a perfect spline P,
in P(C") such that

| g~ sl =

[ Py x|

Hence

g = soll <IIPoll.. 1 g1

Micchelli, Rivlin and Winograd [6] proved the following result.

LEMMA 5.2, Let P, be a perfect spline of degree n satisfying P(x;) =0,
i=0.,k+1for 0=x,<x, < <x,,,. Then

P, <k P, . i=1,2
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where
k,=A4"/4n, k,=((n—1)"""/n1)4/2)" (5.1)

and A=max,_, 4 {1x; 1 — x|}

THEOREM 5.3. Let g in C'™[0,1]| be given. Suppose that V,(C)=
sE€S: (g—5)?0)=(g—5)?(1)=0, i=0,.,n—2), where 0=x,<
Xy <o <Xy < Xpy1=1 are the knots of S. Suppose that s, is a best L,-
approximation to g out of V (C) and g—s, vanishes only on a set of
measure zero. Then

g —=sol <kil g™, i=12

where k,, k, are defined in (5.1).

Proof. We conclude from Theorem 5.1 that there exists a perfect spline
P, satisying Py(x;) =0, i=0,...k+ 1, |Py"|, =1 and

I8 =80l <1 Pollo I £
Then the assertions follow from Lemma 5.2.

Remark. These results can be applied in numerical integration. The
relationship between L -approximation with spline functions and best
quadrature formulae was studied by Strauss [11] in detail. Using the
theorems of this section we are able to give estimates for the remainder
functionals of these best quadrature formulae.
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