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INTRODUCTION

Recently best L I-approximation of continuous functions was extensively
studied.

Galkin [2] and Strauss [10J showed that the problem of best approx­
imation of continuous functions by polynomial splines has a unique solution.
Micchelli [5 J considered best L [-approximation by weak Chebyshev
subspaces and studied a class of functions for which the best approximation
is the unique solution of an interpolation problem with nodes independent of
the functions. DeVore [11 has established a very nice condition for unique
one-sided best L I-approximation which is very useful in applications to
special functions.

In this paper we give first, a similar condition ensuring uniqueness of best
L I-approximation. This condition can be considered a generalized Haar
condition. Using it, we give a short proof of uniqueness of best L [­
approximation from subspaces of spline functions.

Then we consider the relationship between best LI-approximation and
certain classes of perfect splines. We characterize best L I-approximations
from spline subspaces using perfect splines. We construct bounds for the
error of best L I-approximations from spline subspaces which satisfy certain
boundary conditions. These estimates have an application in numerical
integration.

1. UNIQUENESS IN L[-ApPROXIMATION

In this section we shall develop conditions ensuring that the best approx­
imation of a continuous function in the L [-norm is unique.

We shall need the following notation: Let qa, b] be the space of
continuous real-valued functions on the interval la, b] normed by
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)
!v(x)1 dx

1'0

II/II = .I'~ 1/(x)1 dx. If/E Cia, b j then Z(f) = 1x E la, b l:f(x) = 0 f. and two
zeros x J ' x 2 of/are said to be separated if there is an x o' x I < X o < X 2' such

that/(xo) *' O.
The following condition will turn out to be very important for uniqueness

in L I-approximation.

DEFINITION 1.1. Let V=spanjv" ... ,vnl be a subspace of Cla.bi such
that every function v in V has only a finite number of separated zeros. We
say that the subspace V satisfies condition A. if there exists. for every
nonzero v in V and every finite subset ZI = jtl .... ,trl of Z(v)li(a.b). a
nonzero w in V such that

(a) (-I)iW(X)~O for xE [t; I,til, i= l.. .. .r+ 1. where to=a.

tr+,=b;

(b) if v vanishes on an open subset of la, b I. then w. too. vanishes
there.

A similar condition concerning one-sided L I-approximation was suggested
by DeVore 11].

EXAMPLE 1.2. Every finite dimensional Chebyshev subspace of Cia. b I
satisfies condition A.

In Section 3 we show that subspaces of spline functions with fixed knots
also satisfy condition A.

Condition A can be considered a generalized Haar condition.
Next we shall need the following results on L I-approximation.

THEOREM 1.3. Let V = span jVI'"'' Vn l be an n-dimensional subspace of
Cia, b I and f be a Junction in Cia, b I:

(a) The Junction Vo in V is a best LI-approximation from V to.r i.e ..
Ilf- voll <IIJ- v II Jor all ~. in V, if and on~v if

I.e v(x)sgn(J-voK'I:)dx! <\(1
for all v in V.

(b) Let VI' v2 be two best LJ-approximations then

(f(x) - vl(x»(J(x) - v 2(x» ~ O.

Proof See Rice 18, pp. 104, 1071.

xE la, bl·

THEOREM 104. Let V be an n-dimensional subspace of CI a, b I satisfving
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condition A. Then every function f in C(a, b] has a unique best L 1­

approximation from V.

Proof Let vi'v 2 be two best approximations to f We conclude from
Theorem 1.3 that

(f(x) - V I (x)) (f(x) - v2(x))? 0, xE [a,b].

W.l.o.g., we may assume that v2 = O. Then it is obvious that (1/2) VI is also
a best approximation. Moreover, we have

Ij(x) - (1/2) vl(x)1 = (1/2) Ij(x) - vl(x)1 + (1/2) Ij(x)l.

Hence it follows from Ij(x)-(1/2)v l(x)I=0 that Ij(x)-vl(x)l=
Ij(x)I=O. Therefore, vl(x)=O ifj(x)-(1/2)v l(x)=0.

Now we conclude from condition A that there exists a nonzero Vo in V
satisfying

(f(x) - (1/2) vl(x)) vo(x)? 0, x E [a, b j,

(f(xo) - 0/2) VI (xo)) vo(xo) 01= 0

for some Xo and the measure of the set {x: x E Z(v l ), x E Z(vo)} is zero.
Therefore

II: sgn(f(x)-0/2)VI(X))Vo(X)dXI >0.

Moreover, it follows that

We conclude from Theorem 1.3 that (1/2) VI is not a best approximation.
This contradiction proves the theorem.

2. SUBSPACES OF SPLINE FUNCTIONS

In this section we consider subspaces of spline functions with fixed knots
satisfying certain boundary conditions.

Let S be the subspace of polynomial spline functions with fixed knots,
a < Xl < x 2 < ... < x m < b, having multiplicities m l , ... , mr , respectively.
Hence every s in S has the form
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m

\' m=k
........... f ~

i:-::]

Let Ie 10,... , n - 1 f and J c 10,... , n - 1 f be two preassigned subsets of the
set of indices 10,... , n - 1 f

We denote by S(C), where C = 11, J f the subspace of S satisfying

S(C) = ls E S: sU)(a) = 0, i E I,

sU)(b)=O,jEJI'

Corresponding to I and J we define the sets

1'== {n-i-l:iE {O, n-l:f\li == {i:.}~ ~).

J'= 1n-j-l:jE 10, ,n-!f\J1 = U;.};J-i·

It follows that (I')' = I and (J')' = J.
We shall also need the following definitions.
A subset 1VI"'" V n f of linearly independent functions of Cia. b I is called a

weak Chebyshev system if every function t' in V = span 1v I ..... vI/I has at
most n - I sign changes on [a, b]. The subspace V is called a weak

Chebyshev subspace. The subset lvd7 is called a complete weak Chebyshet·
system if the subsets 1vd~ are weak Chebyshev systems for k = l.... , /1. The
subspace V is called a complete weak Chebyshev subspace if V contains a
basis 1vd7which is a complete weak Chebyshev system.

It will be necessary that the sets I and J satisfy certain conditions.
Let I and J be subsets of 10,.... /1 - I f such that

M, I + r;;, v, I' = l. ... , /1. (2.1 )

where r = /1 + k - p - q ;;, ° and MI' counts the number of terms in
iil, ... ,ip,jl,... ,jqf less than or equal to v.

LEMMA 2.1. Let S(C) be given where C = 11, Jl satisfv conditions (2.1 ).
The/1 S(C) is weak Chebyshev subspace oj dimensio/1 r = /1 + k - p - q.

Proof This result is shown by Micchelli and Pinkus [71 for simple knots
but it is also true for multiple knots.
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LEMMA 2.2. Suppose that ] and J satisfy conditions (2.1). Then the
corresponding subsets ]' and J' satisfy

M~_I+k~v, v = 1,... , n, (2.2)

where M~ counts the number of terms in {i; ,..., i~ _p' j; ,...,j~_q} less than or
equal to v.

Proof It can be shown that M~_l = 2v - p - q +Mn- v -l' v = 1, ,
n - 1, and it follows from the assumptions that M n - v - 1 + r ~ n - v, v = 1, ,
n - 1. Since r = n + k - p - q we obtain M~_l + k ~ v, v = 1,... , n - 1.
Moreover, M~_l + k = 2n - p - q + k = r + n. This proves the lemma.

Henceforth it is always required that the boundary conditions C of S(C)
satisfy conditions (2.1).

3. UNIQUENESS IN LI-ApPROXIMATION FOR SUBSPACES OF SPLINE

FUNCTIONS

Uniqueness in L I-approximation for subspaces of spline functions has
been shown in [2, 1OJ. Here we want to give a simple proof of uniqueness
using the results of Section 1. Moreover, we consider approximation
problems satisfying certain boundary conditions. These results can be
applied to numerical integration.

LEMMA 3.1. Let V be an n-dimensional weak Chebyshev subspace of
qa, bJ.

(a) Then V is a complete weak Chebyshev subspace.

(b) Given a=xO<xl<",<xn_l<xn=b. Then there exists a
nontrivial v in V such that

(-1/+ 1 vex) ~ 0, i = I,... , n.

Proof (a) See Sommer and Strauss [9].

(b) See Jones and Karlovitz [3 J.
Now we shall show the following result:

THEOREM 3.2. The subspace S(C) satisfies condition A.

Proof Let s be a function of S(C). We shall distinguish the following
cases:

(a) Suppose that s has no zero interval. According to Lemma 2.1,
S(C) is a weak Chebyshev subspace. It follows from Lemma 3.1 (a) that
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S(C) is a complete weak Chebyshev subspace. Assume that s has the zeros
V= judll' t < r, on (a, b). Let VI = {vd~ be a subset of V. Then there exists
a weak Chebyshev subspace of dimension v + 1 of S(C). It follows from
Lemma 3.1 that there is a nontrivial s 1 E S(C)

i = I,... , v + L

vo=a, v,'+I=b.

(b) The function s has a zero interval. Assume that [x;,xj ] is a subin­
terval such that s(x)=O, xE [xi,xj ] and s has no zero interval on [a,xJ
We define

VI = js Ila,x;]: S E S, s(i)(a) = 0, i E I,

sU)(x;) = O,j EO,... , m ~ m i - I ~.

Let V = {ud~ be the set of zeros of s on (a, Xi) and let 1v;}\ be a subset of U.
It follows from (a) that there exists some sE VI satisfying

i=I,... ,v+L

Then we define SI E S(C) by SI(X) = s(x), X E la, Xi) and SI(X) = °
elsewhere.

(c) Similarly a function s I can be constructed if Xi = a, X j < b.

This proves that S(C) satisfies condition A.
Now we shall study an approximation problem satisfying boundary

conditions. Let the subspace S in Cia, b] be given. Let C = 11,11 be
boundary conditions satisfying (2.1). Suppose that g in Cia, b] is a function
such that g(ipl(a) exists if 1 *- 0 and gUql(b) exists if 1 *- 0. We define

Vg(C) = js E S: s(i)(a) = g(i)(a), i E 1,

sU)(b) = gU)(b),j E 1}.

It is well·known that Vg(C) *- 0 if 1 and 1 satisfy (2.1).

THEOREM 3.3. There is a unique function So in Vg(C) satisfying
II g - Soil ~ II g - sll for all sE Vg(C).

Proof Let s be a function of Vg(C). We definef= g - S. It follows from
Theorem 1.4 and Theorem 3.2 that there exists a unique best L I

approximation s 1 from S(C) to f Hence So = s + s I is the unique function
satisfying [I g - SO I[ ~ I[ g - s II, s E Vg ( C).
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(4.1 )

Finally we shall give an example that unicity is not true for weak
Chebyshev subspaces, in general.

EXAMPLE 3.4. We define the following functions on [0, 5]. Let

vI(x) = 1,

-1+x O<x<1

v1(x) = 0 1 <x <4,

x-4 4<x<5

j'-X O<x<1

f(x) = 0 l<x<4

x-4 4<x<5

Then every function of V = span {v l' V l} has at most one sign change, i.e., V
is a weak Chebyshev subspace. On the other hand, we have for 0 <C < 1
that

5f v1(x) sgn(f- Cv1)(x) dx = 0,
o

2a = II: vI(x) sgn(f- cv1)(x) dxl <tif-
CV

2) IV I(x)ldx = 3.

Hence we conclude from Theorem 1.3 that CV 1 , 0 <C < I, are best approx­
imations tof

4. LI-ApPROXIMATION AND PERFECT SPLINES

In this section we shall show that best L I-approximation for subspaces of
spline functions is closely related to certain classes of perfect splines.

A perfect spline of degree n (n? I) with r knots on [a, b] is a function of
the form

P(x) = C(x
n + 2 i~I (-I)i(X - U;):) + ~~ aj >!

where c, ao"'" an _ I are real constants and the knots lUi} satisfy
a <u l < ... <ur < b.

Let S be the subspace of Section 2. Suppose thatf and s are two functions
such that IE ern) [a, b] and s E S.
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Repeated integration by parts yields the identity

,bI U - S)(X) p(n)(X) dx
'u

n-l
= ~ (-IYU - S)Ui(X) p(n-i l)(X) I~

i~ 0

m mj

+ \' \' (_I)n-.i(f_s)ln-.iJ(X)pU-1I(X)\' I)
~ ~ _ ~ Ix,·O
i~I;~1 '

.b

+ (_1)n I f1n)(x) P(X) dx.
va

(4.2 )

The following class of perfect splines will be very important.
Let S(C) be a subspace where C = {I, J~ satisfies (2.1). Suppose that

C' = {I I, J '} are the boundary conditions corresponding to C. Let P(C') be
the set of perfect splines of degree n satisfying

j= 0,... , mi - 1 for

iP(n)(x)! = 1.

pli)(a) =0,

pUlex;) = 0,

i El', pUI(b)=O, JEJ'.

i = 1..... m. (4.3)

It is said that the class P(C') corresponds to S (C).

LEMMA 4.1. There exists a perfect spline P in P(C') with at most
n + k - p - q knots.

Proof See Karlin [41.

LEMMA 4.2. Let h be a function such that hex) = t;(-lr a.e. on (t i t' til,
where a = to < t 1 < ... < tr+ 1 = b, i = 1'00" r + 1 and {; E {-I, I! satisfying

.b

I sex) hex) dx = °
• U

for all s E S(C). Then there exists a perfect spline P E P( C') satisfving
pIn) = h a.e.

Proof Let P(x) be of the form (4.1) where t i = U i' i = 1, ... ,r. Then we
determine the coefficients ao'"'' an - l of P such that the first n conditions of
(4.3) are satisfied. Since the boundary conditions C' satisfy (2.2) the set {ail
is uniquely determined. Then it is possible to prove with identity (4.3) where
f= ° that the other conditions of (4.3) are also satisfied. (See also Ill.
Theorem 2.31.)
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Henceforth we shall always consider a function g and a subset Vg ( C)
satisfying the properties of Section 3.

THEOREM 4.3. Let So be a function in ViC) such that g - So vanishes
only on a set of measure zero. Then So is a best L I-approximation to g out of
Vg(C) if and only if there exists a perfect spline P in P(C') where P(C')
corresponds to S(C) such that pen) = sgn(g - so) a.e.

Proof (a) Let So be a best approximation. Then it follows from
Theorem 1.3 that

bt sex) sgn(g(x) - so(x)) dx = 0, s E S(C).

Hence it follows from Lemma 4.2 that there exists a P in P(C') satisfying
pen) = sgn( g - so) a.e.

(b) There is a P (C') such that pen) = sgn(g - so) a.e. Let f= 0 in
(4.2). Then it follows from this identity that

_b

r sex) p<n)(X) dx = 0,
'U

s E S(C).

We conclude from Theorem 1.3 and pen) = sgn(g - so) a.e. that 0 is a best
approximation from S(C) to g - so' Hence So is a best approximation to g
out of ViC).

THEOREM 4.4. Let So be a best Lj-approximation to g in c<n) [a, b] out of
Vg(C). Suppose that g - So vanishes only on a set of measure zero.

(a) Then

for all Pin P(C').

(b) There exists a Po in P(C') such that

II g - Soil = IS: g<n)(x) Po(x) dx I·

Proof (a) It follows from IP(n)(x)1 = 1 that

S: Ig(x) - so(x)1 dx ~ IS: (g(x) - so(x)) p(n)(x) dx 1
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for all P in P(C'). Then we conclude from (4.2) that

(b) Let Po be the perfect spline of Theorem 4.3 corresponding to the
best approximation so' Then

f I g(x) - so(x)1 dx = I( (g(x) - so(x)) p~n)(x) dx i .

Now the assertion follows as in (a).

5. ESTIMATES

In this section we want to estimate the error in L I-approximation for some
special problems. The estimates have an application in numerical integration.

THEOREM 5.1. Let gin C<nl/ a, bl and VR(C) be given. Suppose thal So is
a best L1-approximation to g out of Vg(C) and g - So vanishes only on a set
of measure zero. Then there exists a Po in PCC') satisfying

Proof We conclude from Theorem 4.4(b) that there is a perfect spline Po
in P(C') such that

II g - soil = I( g(n)(x) Po(x) dx I·

Hence

Micchelli, Rivlin and Winograd [6] proved the following result.

LEMMA 5.2. Let Po be a perfect spline of degree n satisfying P(x;) = O.
i=O,... ,k+ IforO=xo<x j < ... <XkIJ • Then

i = I. 2



BEST L [-APPROXIMATION

where

307

(5.1 )

and L1 = maxi=O, ... ,k {!X i +[ -xii}.

THEOREM 5.3. Let g in c(n) [0, 1] be given. Suppose that Vg(C) =
{sES:(g-s)(i)(O)=(g-s)(i>Cl)=O, i=0, ... ,n-2}, where O=xo <
x I < ... < x k < x k + I = 1 are the knots of S. Suppose that So is a best L [­
approximation to g out of Vg(C) and g - So vanishes only on a set of
measure zero. Then

II g - soil ~ k i II g(n) II, i = 1,2

where k[, k 2 are defined in (5.1).

Proof We conclude from Theorem 5.1 that there exists a perfect spline
Po satisying PO(xi) = 0, i = 0,... , k + 1, IIP~n)lloo = 1 and

II g - soil ~ IIPoll oo II g(n) II·

Then the assertions follow from Lemma 5.2.

Remark. These results can be applied in numerical integration. The
relationship between L I-approximation with spline functions and best
quadrature formulae was studied by Strauss [11] in detail. Using the
theorems of this section we are able to give estimates for the remainder
functionals of these best quadrature formulae.
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